Chemical elements
  Nickel
    History
    Occurrence
    Isotopes
    Energy
    Production
    Preparation
    Application
    Catalyst
    Physical Properties
      Gravity
      Hardness
      Mechanical Properties
      Compressibility
      Plastic Flow
      Coefficient of Expansion
      Thermal Conductivity
      Molten Nickel
      Magnetic Power
      Thermal Properties
      Index of Refraction
      Radiation Energy
      Spectrum
      Absorption Spectra
      X-ray Spectrum
      Emission of Electrons
      Photoelectric Effect
      Ionization Potentials
      Conductivity
      Conductivity of Crystal Nickel
      Voltaluminescence
      Contact Potential
      Electrochemical Series
      Electrode Potential
      Over-voltages
      Salts Solutions
      Electrodeposition
      Nickel-Iron Accumulator
      Thermoelectric Force
      Peltier effect
      Thomson effect
    Compounds
    PDB 1a5n-1g2a
    PDB 1g3v-1mn0
    PDB 1mro-1s9b
    PDB 1scr-1xmk
    PDB 1xu1-2cg5
    PDB 2cqz-2jih
    PDB 2jk8-2v4b
    PDB 2vbq-3c2q
    PDB 3c6c-3h85
    PDB 3hdp-3kvb
    PDB 3l1m-3o00
    PDB 3o01-4ubp
    PDB 8icl-9ant

Index of Refraction of Nickel






The index of refraction, μ the extinction coeff., k; and the reflecting power, R, of electrolytic nickel were measured by R. S. Minor, F. Rother and K. Lauch, K. Lauch, H. Hauschild, A. de Gramont, M. Luckiesh, R. Hamer, I. C. Gardner, A. Kundt, M. Laue and F. F. Martens, P. Bergman and W. Guertler, F. Hlucka, A. Q. Tool, H. du Bois and H. Rubens, A. Pfluger, W. Rathenau, and E. Hagen and H. Rubens. The results of W. Meier for wave-lengths λ=589 to 668, for electrolytic nickel, and of G. Pfestorf for λ=578 to 254, are:

λ668589578436406366313254
μ1.741.581.631.421.361.331.351.14
k3.803.422.101.941.801.691.491.69
R68.365.565.054.053.049.143.544.9 per cent.


The observations of G. Quincke for λ up to 527, 589, and 656, and of P. Drude for λ=589 and 630, and of M. Laue and F. F. Martens for λ=630:

λ431486527589589630630656
μ1.401.541.631.741.791.89 1.991.93
k2.492.903.113.393.323.553.953.83
R53.358.664.563.462.063.767.666.8 per cent.


Observations were also made by H. von Wartenberg, M. Luckiesh, G. Pfestorf, P. R. Gleason, F. Henning, L. R. Ingersoll, C. Zakrewsky, and A. Q. Tool. I. C. Gardner studied the reflecting power in the ultra-violet; E. Hagen and H. Rubens, the variation of the emissive power with temp.; and E. Hagen and H. Rubens found for the reflecting power:

λ251326385420550770800500014,000
R37.840.347.851.962.668.869.694.4 97.2 per cent.
Ultra-violetVisibleUltra-red


Reflecting Power of Nickel
The Reflecting Power of Nickel.
W. W. Coblentz and R. Stair found the reflecting power of chromium to be greater than that of nickel; and their results are summarized in Fig. The reflecting power of nickel in the ultra-violet was studied by R. Hamer. H. N. Edwards measured the total reflection of nickel films; H. Hauschild, C. A. Skinner and A. Q. Tool, and K. Kiessig, the optical properties of thin films of nickel. W. del Regno observed a break in the emissivity curve near 400°. L. Tronstad, A. H. Pfund, and E. Rupp studied the optical properties of nickel.

J. H. Gladstone gave for the refraction equivalent 10.4, and for the sp. Refraction, 0.177. W. J. Pope gave 12.84 for the refraction equivalent of nickel. H. Knoblauch gave 77.50 for the polarization angle for the ultra-red heat rays, and 70.00 for yellow light. C. J. Davisson and L. H. Germer studied the polarization of the reflected electron waves; W. Lobach, and A. Kundt, the electromagnetic rotation of the plane of polarized light; and L. R. Ingersoll, H. E. J. G. du Bois, J. G. Leathern, K. H. von Klitzing, A. Pietzcker, C. J. Gorter, E. Hirsch, W. Lobach, P. D. Foote, and C. Snow, the Kerr effect.


© Copyright 2008-2012 by atomistry.com