|
Atomistry » Nickel » Physical Properties » Mechanical Properties | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomistry » Nickel » Physical Properties » Mechanical Properties » |
Mechanical Properties of Nickel
Some of the mechanical properties of nickel were noted by the early workers. J. B. Richter observed that nickel is hard and susceptible of a high polish, it is very ductile, and may be hammered, either hot or cold, into plates 1/100th in. thick, or drawn into wires 1/54in. in diam. In more recent times it has been rolled into sheets 0.0008 in. in thickness, and drawn into wires of 0.0004 in. in diam. O. W. Ellis studied the malleability. According to L. Thompson, the malleability of purified nickel is so great that it can be rolled out nearly to the thickness of tinfoil. R. Tupputi said that nickel wears down a file rapidly, and when bent, it becomes hot, and shows an indented fracture. Its malleability is diminished by dissolved carbon or manganese. C. Brunner, and O. L. Erdmann emphasized the brittleness of the nickel which they prepared, and added that when broken by repeated hammering it may exhibit a lustrous, coarse-grained fracture. H. St. C. Deville showed that the metal can be forged without undue oxidation, and the wires are nearly 15 times as tough as iron wires of equal thickness.
T. Fleitmann found that additions of zinc or magnesium augment the toughness and malleability of nickel, and several other metals - Cd, Sn, Pb, Mn, and Fe - can be alloyed with nickel without impairing its working properties. W. C. Roberts- Austen added that the effect of 0.001 part of magnesium is marked. H. Wedding observed that manganese favoured the tensile properties of nickel; and J. Garnier found that 0.003 part of phosphorus enhances the working properties of nickel. H. Wedding, and G. von Selve and F. Lotter added that the cracking and poor working properties of some varieties of nickel are due to the presence of oxygen as nickelous oxide, and this can be overcome by adding deoxidizing agents - e.g., manganese, magnesium, etc. - to the molten metal. Commercial nickel is not always malleable, and this is satisfactory when the metal is required for making alloys, but for making rods, wires, sheets, etc., malleability is an essential quality. If the metal be cast without magnesium, it is weak, and not malleable hot or cold, and a section of the casting is often honeycombed with blow-holes; cast with the magnesium - malleable nickel, previously described - the nickel is sound, homogeneous, and strong; it can be worked hot or cold; and in this malleable state it can be forged, rolled, cast, drawn into wire, spun, and otherwise worked. D. H. Browne and J. F. Thompson recommended 1200° for hot-rolling, and added that a temp, much in excess of this produces a condition approaching red-shortness; and that annealing begins at about 750°, full softness being attained at 900° - the temp, recommended for annealing. G. E. Gardam and D. J. MacNaughtan found that annealing electrodeposited nickel reduces the tensile strength. According to J. B. Richter, and L. Thompson, nickel can be welded like iron, but C. D. Tourte succeeded in welding the metal only imperfectly. D. H. Browne and J. F. Thompson observed that nickel cannot be welded in the ordinary sense, viz. heating in a blacksmith's forge and hammering to a solid weld as with wrought iron. This is due to the absence of a proper flux to dissolve and remove the nickel oxide produced by heating. If the operation be conducted in a reducing atmosphere, nickel readily welds. Nickel can also be welded by means of the oxyacetylene flame, by electric spot-welding, or by butt-welding, where the two pieces form the electrodes and are pushed together so as to extrude the oxide from the weld. In this way it is possible to weld nickel wire to iron to form tips or points for sparkplugs, etc. F. Sauerwald and E. Jaenichen studied the adhesion between surfaces of the metal.
J. R. Benton gave 0.33 for Poissan's ratio; and A. Wassmuth, K. F. Slotte, and W. Meissner gave 0.30. H. Rolnick calculated Poissan's ratio, ω, from ω=0.5-1/6Ek, where E denotes Young's modulus such that E=20.2×l0-1 c.g.s. units, and k is the compressibility, 0.542 c.g.s. units, consequently ω= 0.318. E. Gruneisen observed 0.31. According to W. Gowland, the tensile strength of wrought nickel is 42.4 tons per sq. in. W. B. Parker gave 40 to 45 tons per sq. in. for the maximum stress of commercial nickel, and for purified nickel, 18 to 20 tons per sq. in.; the proportional limit for the commercial metal is 18 to 20 tons per sq. in., and for the purified metal, 6 to 10 tons per sq. in.; the elongation in 8 in. is 4.5 to 2 per cent, for the commercial metal, and 8 to 15 per cent, for the purified metal. H. Copaux gave 18,000 lbs. per sq. in. for the tensile strength of nickel - vide cobalt; L. Jordan and W. H. Swanger, 46,400 lbs. per sq. in. for 99.94 per cent, nickel; and W. von Selve, 42 kgrms. per sq. mm. and an elongation of 32 per cent, for the metal annealed after rolling. D. H. Browne and J. F. Thompson gave for samples of commercial, malleable nickel: yield-point, when cold-rolled, 90,000 to 110,000, and, when annealed, 20,000 to 30,000 lbs. per sq. in.; tensile strength, when cold-rolled, 100,000 to 120,000, and, when annealed, 60,000 to 90,000 lbs. per sq. in.; elongation in 2 in., when cold-rolled, 15 to 20, and, when annealed, 40 to 50 per cent.; and the reduction of area, when cold-rolled, 40 to 50, and, when annealed, 45 to 55 per cent. R. A. Hadfield found for the tensile properties expressed in tons per sq. in. to be:
J. Kollmann gave 38.9 tons per sq. in. for the tenacity of nickel containing 0.05 per cent, of magnesium. Observations were made by H. J. Coe, M. Combe, S. Erk, H. J. French and W. A. Tucker, C. E. Guillaume, T. Kawai, R. Koch and R. Dieterle, P. D. Merica and R. G. Waltenberg, H. F. Moore and T. M. Jasper, W. A. Mudge and L. W. Luff, C. E. Ransley and C. J. Smithells, and A. Schulz. P. Ludwik, and W. del Regno observed that the tensile strength of nickel gradually falls as the temp, rises until it attains a value of 48.5 kgrms. per sq. mm. at 400°, and it then falls nine times more rapidly to 35.8 kgrms. per sq. mm. at 500°. The break near 400° corresponds with breaks also found in the rigidity, resistance, thermo-electric power, and emissive power. F. Robin found that the maximum brittleness occurred at 300 to 350°; I. M. Bregowsky and L. W. Spring gave for the tensile strength, and yield point in lbs. per sq. in. at different temp.:
and A. le Chatelier gave for the tensile strength, T kgrms., and the elongation, E per cent., of a wire at different temp.:
The fall in the tensile strength and the corresponding drop in the elongation and reduction of area have been attributed to an allotropic change corresponding with the change in magnetic properties. This does not agree with observations on the space-lattice, and Z. Jeffries and R. S. Archer attribute the effect to a spontaneous hardening of the metal, such as occurred with the samples tested by W. P. Sykes for Brinell's hardness. The hardening is attributed to the spontaneous healing of slip-planes formed during deformation. In W. P. Sykes' tests, nickel wires freshly cold-drawn from 0.090 in. to 0.025 in. diameter, were placed in a muffle for heat treatment, or kept in liquid air until tested for the tensile strength, in lbs. per sq. in. - the object of the liquid air treatment was to prevent self-hardening which is known to occur in iron, but very slowly at low temp.:
O. Schwarz observed for the effect of rolling, expressed as a percentage reduction, on the tensile strength, expressed in kgrms. per sq. mm.
L. Guillet and co-workers, and M. Weidig observed that annealing the metal at 400° to 800°, and then cooling it in air, reduced its tensile strength, expressed in tons per sq. in.:
L. Guillet examined the effect of annealing on the tensile strength of hard-drawn nickel wires. In all cases the temp, of complete annealing corresponded with a rapid fall in the maximum strength and elastic limit, and a rapid increase in the elongation, and it was practically independent of the amount of cold work. The tensile strength, elastic limit, and elongation of hardened nickel are not affected by heating the metal to a temp, below 400°; a slight deflection occurred at about 400°, and a marked alteration between 700° and 750°. The temp, of complete annealing for nickel is between 700° and 750°. L. Guillet also concluded that the effect of time on the annealing process is relatively small. W. B. Price and P. Davidson represented the effect of annealing on the tensile properties of commercial, cold- rolled nickel by the curves, Fig. The tests were made with and across the grain. The annealing range is between 600° to 800°. Commercially, the metal is annealed at about 900°. No difference has been noticed in quick or slow cooling from the annealing temp.
F. Sauerwald and T. Sperling studied the notched-bar test, and the results are summarized in Fig. There is a minimum near 380°, and a maximum near 450°, and these singular points also occur in the hardness curve. A. Jacquerod and H. Mugeli observed the bending elasticity of drawn nickel to be 22,100 kgrms. per sq. mm. at 0°, and of annealed nickel, 20,400 kgrms. per sq. mm. The temp, coeff. between 0° and 100° are, respectively, 0.0003108 and 0.001056. J. Cournot and M. S. Silva found that the creep-stress of nickel is about twice that of steel at temp, between 500° and 700°. P. L. Irwin, H. J. Gough and D. G. Sop with, G. A. Hankins, H. F. Moore and T. M. Jasper, and J. M. Lessels studied the fatigue and corrosion fatigue strength of nickel. D. J. McAdam obtained data for some static tests, and also for the endurance limit of nickel under cyclic stresses - rotating and alternating torsion.
C. Schaefer gave 9518 kgrms. per sq. mm. for the torsion modulus, or the rigidity of nickel; W. Voigt gave 7820 kgrms. per sq. mm.; and E. Gruneisen, A. Wassmuth, K. F. Slotte, and W. Meissner gave 7800 kgrms. per sq. mm. H. Tomlinson obtained 723×106 grms. per sq. cm. for tlie rigidity of hard-drawn and annealed nickel wires. K. Honda and T. Tanaka gave 7.50×1011 dynes per sq. cm. for the rigidity of nickel; and B. Gutenberg and H. Schlechtweg obtained 8×1011 dynes per sq. cm. K. Iokibe and S. Sakai found the rigidity of wires of length 27.2 cm., and diameter 0.326 mm., to be
H. Tomlinson gave 0.002005 for the logarithmic decrement (base 10), λ, of a torsionally-oscillating, hard-drawn nickel wire, and for the annealed wire, 0.000852. K. Iokibe and S. Sakai measured the logarithmic decrement of nickel wires at different temp., and for wires with the moment of inertia 33,358 grms. per sq. cm., length 27.2 cm., and diameter 0.326 mm., they found
The results are plotted in Fig. For ordinary temp., and up to 80°, the logarithmic decrement decreases; then increases to a maximum at 160°; decreases slightly to 250°, and then increases rapidly. The existence of the maximum is a resultant of the increasing effect due to temp., and the decreasing effect due to the magnetic transformation of nickel. J. Cournot and M. S. Silva, and M. Ishimoto also studied the internal viscosity of nickel; and T. Gnesotto and L. A. Alberti, and K. Honda and S. Konno, the rigidity and viscosity at the Curie point. |
Last articlesZn in 9JYWZn in 9IR4 Zn in 9IR3 Zn in 9GMX Zn in 9GMW Zn in 9JEJ Zn in 9ERF Zn in 9ERE Zn in 9EGV Zn in 9EGW |
© Copyright 2008-2020 by atomistry.com | ||
Home | Site Map | Copyright | Contact us | Privacy |