Chemical elements
    Physical Properties
      Mechanical Properties
      Plastic Flow
      Coefficient of Expansion
      Thermal Conductivity
      Molten Nickel
      Magnetic Power
      Thermal Properties
      Index of Refraction
      Radiation Energy
      Absorption Spectra
      X-ray Spectrum
      Emission of Electrons
      Photoelectric Effect
      Ionization Potentials
      Conductivity of Crystal Nickel
      Contact Potential
      Electrochemical Series
      Electrode Potential
      Salts Solutions
      Nickel-Iron Accumulator
      Thermoelectric Force
      Peltier effect
      Thomson effect
    PDB 1a5n-1g2a
    PDB 1g3v-1mn0
    PDB 1mro-1s9b
    PDB 1scr-1xmk
    PDB 1xu1-2cg5
    PDB 2cqz-2jih
    PDB 2jk8-2v4b
    PDB 2vbq-3c2q
    PDB 3c6c-3h85
    PDB 3hdp-3kvb
    PDB 3l1m-3o00
    PDB 3o01-4ubp
    PDB 8icl-9ant

Radiation Energy of Nickel

Radiant Energy of Nickel and Nichrome
The Radiant Energy of Nickel and Nichrome.
Y. A. Suydam found that the total radiation energy, E, from heated nickel wires between 463° K. and 1283° K. can be represented by E=cTn, where c, and n are constants, and T denotes the absolute temp. V. A. Suydam's value for n is 4.648 between 463° K. and 1283° K. W. del Regno gave n=4.588; and M. Kahanowicz found n – 5.5 between 273° K. and 903° K. The subject was studied by H. Schmidt and E. Furthmann, A. G. Worthing, W. Geiss, A. L. Helfgott, and G. R. Greenslade. V. A. Suydam's values are plotted in Fig. For 0.0002 mm. press. The temp, is expressed in °K., and the energy, E, in watts per sq. cm.:

T° K463°603°661°773°883°951°1071°1181°1283°

B. T. Barnes obtained for the total emissivity of soot-covered nickel:


C. L. Utterbach obtained for nickel E = c1T5.29 for temp, between 650° K. and 1400° K., and E = c2T4.75 between 1450° K. and 1600° K. There is a break in the value for nickel at about 1450°. C. Hurst, and A. G. Worthing also studied the spectral emissivity of nickel; J. K. Roberts, the energy between the atoms of helium and the surface of nickel; H. B. Wahlin, the emission of positive ions by heated nickel; and N. C. Beese, R. S. Bartlett, G. W. Fox and R. M. Bowie, M. Benjamin, and B. J. Thomson, the thermionic emission from wires coated with barium oxide. C. J. Davisson and L. H. Germer observed a discontinuity near 1-3 A., for the electron waves from nickel.

© Copyright 2008-2012 by