Chemical elements
  Nickel
    History
    Occurrence
    Isotopes
    Energy
    Production
    Preparation
    Application
    Catalyst
    Physical Properties
      Gravity
      Hardness
      Mechanical Properties
      Compressibility
      Plastic Flow
      Coefficient of Expansion
      Thermal Conductivity
      Molten Nickel
      Magnetic Power
      Thermal Properties
      Index of Refraction
      Radiation Energy
      Spectrum
      Absorption Spectra
      X-ray Spectrum
      Emission of Electrons
      Photoelectric Effect
      Ionization Potentials
      Conductivity
      Conductivity of Crystal Nickel
      Voltaluminescence
      Contact Potential
      Electrochemical Series
      Electrode Potential
      Over-voltages
      Salts Solutions
      Electrodeposition
      Nickel-Iron Accumulator
      Thermoelectric Force
      Peltier effect
      Thomson effect
    Compounds
    PDB 1a5n-1g2a
    PDB 1g3v-1mn0
    PDB 1mro-1s9b
    PDB 1scr-1xmk
    PDB 1xu1-2cg5
    PDB 2cqz-2jih
    PDB 2jk8-2v4b
    PDB 2vbq-3c2q
    PDB 3c6c-3h85
    PDB 3hdp-3kvb
    PDB 3l1m-3o00
    PDB 3o01-4ubp
    PDB 8icl-9ant

X-ray Spectrum of Nickel






The X-ray spectrum of nickel was examined by S. K. Allison, A. Arends, M. Balderston, A. H. Barnes, D. K. Berkey, H. Beuthe, S. Bhargava and J. B. Mukherjee, S. Bjorck, H. Bohlin, D. M. Bose, G. B. Deodhar, V. Dolejsek and K. Pestrecoff, R. W. Drier, W. Duane and co-workers, S. Erikson, P. Giinther and I. N. Stransky, E. Hjalmar, M. Ishino and K. Kojima, S. Kawata, B. Kievit and G. A. Lindsay, A. I. Krasnikoff, K. Lang, A. Leide, A. E. Lindh, L. H. Martin, H. G. J. Moseley, B. C. Mukherjee and B. B. Ray, G. Ortner, J. Palacios and N. Velasco, L. G. Parratt, S. Pastorello, M. Privault, H. Purks, W. F. Rawlinson, B. B. Ray and co-workers, H. S. Read, O. W. Richardson and co-workers, F. K. Richtmyer and E. Ramberg, N. Seljakoff and co-workers, J. Shearer, M. Siegbahn and co-workers, N. Stensson, C. H. Thomas, R. Thoraeus, J. Valasek, J. H. Williams, Y. H. Woo, R. W. G. Wyckoff, and S. Yoshida, who observed for the K-series, α2α'=1.65860; α1α=l.65467; α3α4=l.6476; β1β=1.49669; and β2γ=1.48403, with the absorption limits 1.4890. M. Siegbahn and R. Thoraeus, B. C. Mukherjee and B. B. Ray, S. Bjorck, J. H. van der Tuuk, J. Shearer, W. Stenstrom, H. Hirata, S. Kawata, M. Levi, C. E. Howe, F. C. Chalkin, and G. Kellstrom studied the L-series; and B. C. Mukherjee and B. B. Ray, E. C. Stoner, R. B. Witmer and J. M. Cork, S. Bjorck, N. Bohr and D. Coster, B. Walter, M. Levi, and S. R. Rao, the M-series.

W. M. Coates, and O. W. Richardson and co-workers studied the emission of X-rays; N. Ahmad, S. J. M. Allen, L. M. Alexander, T. E. Auren, M. Balderston, B. G. Barkla and co-workers, L. L. Barnes, J. A. Bearden, J. A. Becker, W. H. Bragg and H. L. Porter, A. Hebert and G. Reynaud, R. A. Houstoun, G. W. C. Kaye, H. Kiessig, P. G. Kruger and W. E. Shoupp, L. H. Martin and K. C. Lang, J. Palacios and M. Yelasco, L. G. Parratt, J. A. Prins, S. R. Rao, B. B. Ray and R. C. Mazumdar, H. S. Read, and F. K. Richtmyer and co-workers, the absorption of X-rays; K. Grosskurth, and J. A. Becker studied the effect of a magnetic field on the absorption of X-rays; G. W. Brindley and F. Spiers, D. E. Lea, and B. Blochinzeff and F. Halperin, the scattering of X-rays; H. E. Stauss, the reflection of X-rays; A. J. Lamaris and J. A. Prins, and I. Umansky and V. Veksler, the dispersion of X-rays; J. Veldkamp, the effect of the lattice on the structure of the X-ray absorption spectrum; H. Kiessig, the interference of X-rays by thin films; S. Bhargava and J. B. Mukherjee, the changes produced in X-rays by their passage through thin films of nickel; S. R. Rao, the excitation of X-rays from the different faces of a crystal; C. T. Chu, F. C. Chalkin, E. Vette, S. R. Rao, and O. W. Richardson and S. R. Rao, the excitation of soft X-rays from single crystals and polycrystalline nickel; A. H. Compton, O. W. Richardson and F. S. Robertson, L. P. Davies, and U. Nakaya, the effect of oxidation on the emission of X-rays by nickel. H. S. Read studied the effect of temperature; and J. A. Becker, the slight effect of a magnetic field of 18,000 gauss on the absorption coeff. of nickel for X-rays of short wave-length; R. W. G. Wyckoff, H. Kiessig, R. Piedmiller, and H. W. Edwards, the reflection of X-rays from nickel; W. A. Wood, G. I. Finch and A. G. Quarrell, the diffraction; L. T. Pockman and co-workers, the intensities; E. Acends, the fluorescent effects; H. Kulenkampff, and F. K. Richtmyer and L. S. Taylor, the intensity of X-rays from nickel; S. Pastorello, nickel as a deflection lattice for X-rays; C. D. Cooksey, the radiation produced by X-rays. According to R. W. Jones and G. W. Brindley, B. B. Ray, and R. W. G. Wyckoff, the atomic scattering of X-rays is a minimum at the K-absorption limit of nickel, and a maximum near its resonance wave-length; H. Moller found that the K-doublets are split into two components by straining the metal. N. H. Moxnes, and P. Gunther and I. N. Stransky studied the analysis of alloys of nickel and cobalt; E. Wainer, mixtures with ferric oxide, and with calcium oxide; and W. Arkadieff, the magnetic spectrum of the Hertzian waves.


© Copyright 2008-2012 by atomistry.com